從遠古自然火的利用,到鉆木取火,直至煤炭、石油的利用,人類(lèi)文明的發(fā)展本質(zhì)上是能源利用能力的發(fā)展。迄今為止,人類(lèi)當代文明和經(jīng)濟發(fā)展很大程度上是建立在化石能源開(kāi)發(fā)利用的基礎之上。到了21世紀,由于對地球上不可再生的化石能源儲量的擔憂(yōu),以及化石能源在開(kāi)采與使用過(guò)程中衍生的日益嚴峻的環(huán)境污染,使得人們將探索的目光投向綠色可持續的能源領(lǐng)域,比如太陽(yáng)能、風(fēng)能、水能……
“唯有解決高效利用太陽(yáng)能的科學(xué)問(wèn)題,才是人類(lèi)永續發(fā)展之路。”南開(kāi)大學(xué)化學(xué)學(xué)院陳永勝教授斷言,“太陽(yáng)是萬(wàn)物之母,能源之'源'。每時(shí)每刻抵達地球的太陽(yáng)光能量若能被利用萬(wàn)分之二,即可滿(mǎn)足目前人類(lèi)社會(huì )的全部能源需求。”也正因為如此,陳永勝教授和他的團隊將自己的科研使命濃縮為一句話(huà)——“向太陽(yáng)要能源”!
1.有機太陽(yáng)能電池有望商業(yè)化應用
在人類(lèi)利用太陽(yáng)能的各項技術(shù)中,太陽(yáng)能電池,即利用“光生伏打效應”將光能直接轉換成電能的器件,是當前已獲得廣泛應用,同時(shí)也是最具發(fā)展前景的技術(shù)之一。
長(cháng)期以來(lái),人們更多地以晶硅等無(wú)機材料為基礎制備太陽(yáng)能電池。但是這種電池生產(chǎn)存在工藝復雜、成本高、能耗大、污染重等弊端。能否找到一種成本低、效率高、柔性強、環(huán)境友好的新型有機材料研制出新型太陽(yáng)能電池,眼下正成為世界各國科學(xué)家孜孜以求的目標。
“以地球上最豐富的碳材料為基本原料,通過(guò)技術(shù)手段獲得高效低成本的綠色能源,對于解決目前人類(lèi)面臨的重大能源問(wèn)題具有極其重大的意義。”陳永勝介紹,從20世紀70年代起步的有機電子學(xué)及有機(高分子)功能材料的研究,為這一目標的實(shí)現提供了機遇。
與以硅為代表的無(wú)機半導體材料相比,有機半導體具有成本低、材料多樣性、功能可調、可柔性印刷制備等諸多優(yōu)點(diǎn)。目前,基于有機發(fā)光二極管(OLED)的顯示屏已經(jīng)實(shí)現了商業(yè)化生產(chǎn),并在手機和電視顯示屏中獲得廣泛應用。
而基于有機高分子材料作為光敏活性層的有機太陽(yáng)能電池,具有材料結構多樣性、可大面積低成本印刷制備、柔性、半透明甚至全透明等優(yōu)點(diǎn),具有無(wú)機太陽(yáng)能電池技術(shù)所不具備的許多優(yōu)良特性。除了作為正常的發(fā)電裝置外,在其他領(lǐng)域如節能建筑一體化、可穿戴設備等方面亦具有巨大的應用潛力,引起了學(xué)術(shù)界和工業(yè)界的極大興趣。
“特別是近年來(lái),有機太陽(yáng)能電池的研究獲得了突飛猛進(jìn)的發(fā)展,光電轉化效率不斷刷新。目前科學(xué)界普遍認為有機太陽(yáng)能電池已經(jīng)到了商業(yè)化的'黎明前夕'。”陳永勝說(shuō)。
2.突破瓶頸:努力提高光電轉化效率
制約有機太陽(yáng)能電池發(fā)展的瓶頸在于光電轉化效率偏低。提高光電轉化效率是有機太陽(yáng)能電池研究的首要目標,也是其實(shí)現產(chǎn)業(yè)化的關(guān)鍵。因此,制備出高效率、低成本以及重現性良好的可溶液加工活性材料,則是提高光電轉化效率的基礎。
陳永勝介紹,早期的有機太陽(yáng)能電池的研究主要集中在聚合物的給體材料的設計合成,活性層是基于富勒烯衍生物受體的本體異質(zhì)結構。隨著(zhù)相關(guān)研究的不斷推進(jìn),以及器件工藝對材料的更高要求,具有確定化學(xué)結構的可溶液處理寡聚小分子材料開(kāi)始引起人們的強烈關(guān)注。
“這類(lèi)材料具有結構單一、易提純、光伏器件結果重現性好等優(yōu)點(diǎn)。”陳永勝說(shuō),早期,大多數小分子溶液處理成膜性不好,因此主要采用蒸鍍的方法制備器件,使其應用前景受到很大限制。如何設計合成性能良好并具有確定分子結構的光伏活性層材料,是科學(xué)家們公認的關(guān)鍵難題。
憑借對該研究領(lǐng)域敏銳的洞察力和審慎分析,陳永勝果斷選擇了當時(shí)具有重大風(fēng)險和挑戰的新型可溶液加工處理的有機小分子和寡聚物活性材料作為太陽(yáng)能發(fā)電研究的突破點(diǎn)。從分子材料設計,到光伏器件的制備優(yōu)化,陳永勝帶領(lǐng)科研團隊夜以繼日展開(kāi)科研攻關(guān),經(jīng)過(guò)10年的不懈努力,終于建構出具有鮮明特色的寡聚小分子有機太陽(yáng)能材料體系。
從效率5%到超過(guò)10%,再到17.3%,他們在不斷刷新有機太陽(yáng)能電池領(lǐng)域光電轉化效率的世界紀錄。他們提出的設計理念和方法被科學(xué)界廣泛應用。十幾年來(lái),他們在國際著(zhù)名雜志發(fā)表了近300篇學(xué)術(shù)論文,申請獲得50多項發(fā)明專(zhuān)利。
3.轉化效率一小步,能源界一大步
陳永勝一直在思考:有機太陽(yáng)能電池到底能達到多高的效率,能否最終媲美硅基太陽(yáng)能電池?有機太陽(yáng)能電池產(chǎn)業(yè)化應用的“痛點(diǎn)”在哪里,如何去破解?
在過(guò)去幾年中,雖然有機太陽(yáng)能電池技術(shù)發(fā)展迅速,光電轉化效率已突破14%,但是與無(wú)機和鈣鈦礦等材料制備的太陽(yáng)能電池相比,效率仍然偏低。雖然光伏技術(shù)應用要考慮效率、成本和壽命等多項指標,但效率始終是第一位的。如何發(fā)揮有機材料的優(yōu)勢,通過(guò)優(yōu)化材料設計和改進(jìn)電池結構及制備工藝,從而獲得更高的光電轉化效率?
從2015年開(kāi)始,陳永勝團隊開(kāi)始進(jìn)行有機疊層太陽(yáng)能電池方面研究。他認為,要達到甚至超過(guò)以無(wú)機材料為基礎的太陽(yáng)能電池技術(shù)性能的目標,設計疊層太陽(yáng)能電池是一個(gè)極具潛力的方案——有機疊層太陽(yáng)能電池可以充分利用和發(fā)揮有機/高分子材料具有的結構多樣性、太陽(yáng)光吸收和能級可調節等優(yōu)點(diǎn),獲得具有良好太陽(yáng)光吸收互補的子電池活性層材料,從而實(shí)現更高的光伏效率。
基于上述思路,他們利用團隊設計合成的系列寡聚小分子制備獲得12.7%的有機疊層太陽(yáng)能電池,刷新了當時(shí)有機太陽(yáng)能電池領(lǐng)域的效率,研究結果發(fā)表在領(lǐng)域頂級期刊《自然·光子學(xué)》,該項研究入選“2017年中國光學(xué)十大進(jìn)展”。
有機太陽(yáng)能電池的光電轉化效率究竟有多少提升空間?陳永勝和他的團隊系統梳理分析了目前有機太陽(yáng)能領(lǐng)域材料和器件方面數以千計的文獻和實(shí)驗數據,結合自身的研究積累和實(shí)驗結果,預測出有機太陽(yáng)能電池包括多層器件實(shí)際可達到的最高光電轉化效率,以及對理想活性層材料的參數要求。基于此模型,他們選用在可見(jiàn)和近紅外區域具有良好互補吸收能力的前電池和后電池的活性層材料,獲得了驗證效率為17.3%的光電轉化效率,這是目前文獻報道的有機/高分子太陽(yáng)能電池光電轉化效率的世界最高紀錄,把有機太陽(yáng)能電池的研究推向了一個(gè)新的高度。
“按照我國2016年43.6億噸標準煤當量的能源需求計算,如果有機太陽(yáng)能電池光電轉化效率提高一個(gè)百分點(diǎn),相應的能源需求由太陽(yáng)能電池來(lái)產(chǎn)生,就意味著(zhù)每年可減少二氧化碳排放約1.6億噸。”陳永勝說(shuō)。
有人說(shuō),硅是信息時(shí)代最重要的基礎性材料,其重要性不言而喻。但在陳永勝看來(lái),硅材料也有其缺點(diǎn):“且不說(shuō)硅材料在制備過(guò)程中需要付出巨大的能源和環(huán)境代價(jià),它的硬、脆特性也難以滿(mǎn)足未來(lái)人類(lèi)對于'可穿戴'器件的柔性要求。因此,以具有良好的可折疊的柔性碳材料為基礎的技術(shù)產(chǎn)品將是新材料學(xué)科可預見(jiàn)的發(fā)展方向。”
來(lái)源:光明日報